Modification of the Optimal Auxiliary Function Method for Solving Fractional Order KdV Equations
نویسندگان
چکیده
In this study, a new modification of the newly developed semi-analytical method, optimal auxiliary function method (OAFM) is used for fractional-order KdVs equations. This called fractional (FOAFM). The time derivatives are treated with Caputo sense. A rapidly convergent series solution obtained from FOAFM and validated by comparing other results. analysis proves that our simplified applicable, contains less computational work, has fast convergence. beauty there no need to assume small parameter such as in perturbation method. effectiveness accuracy proven numerical graphical
منابع مشابه
A New Modification of the Reconstruction of Variational Iteration Method for Solving Multi-order Fractional Differential Equations
Fractional calculus has been used to model the physical and engineering processes that have found to be best described by fractional differential equations. For that reason, we need a reliable and efficient technique for the solution of fractional differential equations. The aim of this paper is to present an analytical approximation solution for linear and nonlinear multi-order fractional diff...
متن کاملHYBRID OF RATIONALIZED HAAR FUNCTIONS METHOD FOR SOLVING DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER
Abstract. In this paper, we implement numerical solution of differential equations of frac- tional order based on hybrid functions consisting of block-pulse function and rationalized Haar functions. For this purpose, the properties of hybrid of rationalized Haar functions are presented. In addition, the operational matrix of the fractional integration is obtained and is utilized to convert compu...
متن کاملa new modification of the reconstruction of variational iteration method for solving multi-order fractional differential equations
fractional calculus has been used to model the physical and engineering processes that have found to be best described by fractional differential equations. for that reason, we need a reliable and efficient technique for the solution of fractional differential equations. the aim of this paper is to present an analytical approximation solution for linear and nonlinear multi-order fractional diff...
متن کاملThe spectral iterative method for Solving Fractional-Order Logistic Equation
In this paper, a new spectral-iterative method is employed to give approximate solutions of fractional logistic differential equation. This approach is based on combination of two different methods, i.e. the iterative method cite{35} and the spectral method. The method reduces the differential equation to systems of linear algebraic equations and then the resulting systems are solved by a numer...
متن کاملA new optimal method of fourth-order convergence for solving nonlinear equations
In this paper, we present a fourth order method for computing simple roots of nonlinear equations by using suitable Taylor and weight function approximation. The method is based on Weerakoon-Fernando method [S. Weerakoon, G.I. Fernando, A variant of Newton's method with third-order convergence, Appl. Math. Lett. 17 (2000) 87-93]. The method is optimal, as it needs three evaluations per iterate,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractal and fractional
سال: 2022
ISSN: ['2504-3110']
DOI: https://doi.org/10.3390/fractalfract6060288